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How to use this document

• These notes contain many sample calculations. It is important to do these your-
selves - type them in at your keyboard and see what happens on your
screen - to get the feel of working in R .

• Exercises in the middle of a section should be done immediately when you get to
them, and make sure you have them right before moving on. Some more challenging
exercises (indicated by asterisks or identified as a Project) are given at the end of
some sections. These can be left until later, and may be assigned as homework.

These notes are based in part on course materials by former TAs Colleen Webb, Jonathan
Rowell and Daniel Fink at Cornell, Lou Gross (University of Tennessee) and Paul Fackler
(NC State University), and on the book Getting Started with Matlab by Rudra Pratap
(Oxford University Press). It also draws on the documentation supplied with R.

1 What is R ?

R is an object-oriented scripting language that combines

• a programming language called S developed by John Chambers at Bell Labs, that
can be used for numerical simulation of deterministic and stochastic dynamic mod-
els

• an extensive set of functions for classical and modern statistical data analysis and
modeling

• graphics functions for visualizing data and model output
• a user interface with a few basic menus and extensive help facilities

R is an open-source project, available for free download via the Web. Originally a re-
search project in statistical computing (Ihaka and Gentlemen 1996) it is now managed by
a development team that includes a number of well-regarded statisticians, and is widely
used by statistical researchers (and a growing number of theoretical ecologists) as a plat-
form for making new methods available to users. The commercial implementation of S
(called S-plus) offers an Office-style “point and click” interface that R lacks. However
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for our purposes this front-end is outweighed by the fact that R is built on a faster and
much less memory-hungry implementation of S and is easier to interface with other lan-
guages. A standard installation of of R also include extensive documentation, including
an introductory manual (∼ 100 pages) and a comprehensive reference manual (over 1000
pages).

1.1 Installing R on your computer

The main source for R is the CRAN home page cran.r-project.org. You can get
the source code, but most users will prefer a precompiled version. To get one of these
from CRAN, click on the link for your OS, continue to the folder corresponding to your
OS version, and from there to the download file (e.g. base/rwxxxx.exe for Windows,
rmxxx.sit for under MacOS, where xxxx is the version number).

The standard distributions of R include several libraries, user-contributed suites of
add-on functions. These Notes use some libraries that are not part of the stan-
dard distribution. In the Windows version additional libraries can be installed easily
from within R using the Packages menu. Only some of the libraries are available
pre-compiled for UNIX/LINUX and MacOS X. For others libraries in UNIX/LINUX
you have to download and compile the source code. For MacOS 10.2, a complete
pre-packaged version is maintained and distributed by Jan de Leeuw of the Depart-
ment of Statistics at UCLA, at http://gifi.stat.ucla.edu/pub. The document
http://gifi.stat.ucla.edu/pub/R.pdf gives installation instructions. The version
with all the libraries required in this class is the “exit Gifi” option in those instructions.
You’ll need a good net hookup: the files are very large.

For Windows, R is installed by launching the downloaded file and following the on-
screen instructions. At the end you’ll have an R icon on your desktop that can be used
to launch the program. Installing versions for LINUX or UNIX is more complicated and
idiosyncratic, which will not bother the corresponding users.

We suggest that you edit the file Rconsole and change the line MDI=yes to MDI=no, and
edit Rprofile to un-comment options(chmhelp=TRUE) by removing the # at the start of
the line. These changes allow the command and graphics windows to move independently
on the desktop, and selects the most powerful version of the help system. Some GUI
options can be set from program menus when R is running (Edit/GUI Preferences in the
Windows version).

2 Interactive calculations

WhenR is launched it opens the console window. This has a few basic menus at the top,
whose names and content are OS-dependent; check them out on your own. The console
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window is also where you enter commands for R to execute interactively, meaning that
the command is executed and the result is displayed as soon as you hit the Enter key.
For example, at the command prompt >, type in 2+2 and hit Enter; you will see

> 2+2

[1] 4

To do anything complicated, the results from calculations have to be stored in variables.
For example, type a=2+2; a at the prompt and you see

> a=2+2; a

[1] 4

The variable a has been created, and assigned the value 4. The semicolon allows two or
more commands to be typed on a single line; the second of these (a by itself) tells R to
print out the value of a. By default, a variable created this way is a vector (an ordered
list of numbers); in this case a is a vector length 1, which acts just like a number.

Variable names in R must begin with a letter, and followed by alphanumeric characters.
Long names can be broken up using a period, as in very.long.variable.number.3, but
(Windows users beware!) you cannot use the underscore character ( ) or blank space
as a separator in variable names. R is case sensitive: Abc and abc are not the same
variable.

Calculations are done with variables as if they were numbers. R uses
+, -, *, /, and ^ for addition, subtraction, multiplication, division and exponenti-
ation, respectively. For example enter

> x=5; y=2; z1=x*y; z2=x/y; z3=x^y; z2; z3

and you should see

[1] 2.5

[1] 25

Even though the variable values for x, y were not displayed, R “remembers” that values
have been assigned to them. Type > x; y to display the values.

If you mis-enter a command, it can be edited instead of starting again from scratch. The
↑ key recalls previous commands to the prompt. For example, you can bring back the
next-to-last command and edit it to

> x=5 y=2 z1=x*y z2=x/y z3=x^y z2 z3
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abs(x) absolute value
cos(x), sin(x), tan(x) cosine, sine, tangent of angle x in radians
exp(x) exponential function
log(x) natural (base-e) logarithm
log10(x) common (base-10) logarithm
sqrt(x) square root

Table 1: Some of the built-in mathematical functions in R. You can get a more com-
plete list from the Help system: ?Arithmetic for simple, ?log for logarithmic, ?sin for
trigonometric, and ?Special for special functions.

so that commands are not separated by a semicolon. Then press Enter, and you will get
an error message.

You can do several operations in one calculation, such as

> A=3; C=(A+2*sqrt(A))/(A+5*sqrt(A)); C

[1] 0.5543706

The parentheses are specifying the order of operations. The command
> C=A+2*sqrt(A)/A+5*sqrt(A)

gets a different result — the same as
> C=A + 2*(sqrt(A)/A) + 5*sqrt(A).

The default order of operations is: (1) Exponentiation, (2) multiplication and division,
(3) addition and subtraction.

> b = 12-4/2^3 gives 12 - 4/8 = 12 - 0.5 = 11.5

> b = (12-4)/2^3 gives 8/8 = 1

> b = -1^2 gives -(1^2) = -1

> b = (-1)^2 gives 1

In complicated expressions it’s best to use parentheses to specify explicitly what
you want, such as > b = 12 - (4/(2^3)) or at least > b = 12 - 4/(2^3) .

R also has many built-in mathematical functions that operate on variables (see
Table 1). You can get help on any R function by entering

?functionname

in the console window (e.g., try ?sin). You should also explore the items available on
the Help menu, which include the manuals, FAQs, and a Search facility (’Apropos’ on
the menu) that is useful if you sort of maybe remember part of the the name of what it
is you need help on.

Exercise 2.1 : Have R compute the values of

1. 27

27−1and compare it with
D
1− 1

27

i−1
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2. sin(π/9), cos2(π/7) [Note that typing cos∧2(pi/7) won’t work!]
3. 27

27−1 + 4 sin(π/9), using cut-and-paste to assemble parts of your past commands

Exercise 2.2 : Do an Apropos on sin via the Help menu, to see what it does. Now
enter the command

help.search("sin")

and see what that does (answer: help.search pulls up all help pages that include ’sin’
anywhere in their title or text. Apropos just looks at the name of the function).

3 A first interactive session: linear regression

To get a feel for working in R we’ll fit a straight line model (linear regression) to data.
Below are some data on the maximum growth rate rmax of laboratory populations of
the green alga Chlorella vulgaris as a function of light intensity (µE per m2 per second).
These experiments were run during the system-design phase of the study reported by
Fussmann et al. (2000).

Light: 20, 20, 20, 20, 21, 24, 44, 60, 90, 94, 101
rmax: 1.73, 1.65, 2.02, 1.89, 2.61, 1.36, 2.37, 2.08, 2.69, 2.32, 3.67

To analyze these data in R , first enter them as numerical vectors :

Light=c(20,20,20,20,21,24,44,60,90,94,101);

rmax=c(1.73,1.65,2.02,1.89,2.61,1.36,2.37,2.08,2.69,2.32,3.67);

The function c() combines the individual numbers into a vector.

To see a histogram of the growth rates enter > hist(rmax) which opens a graphics
window and displays the histogram. There are many other built-in statistics functions,
for example mean(rmax) gets you the mean, sd(rmax) and var(rmax) return the stan-
dard deviation and variance, respectively.

To see how the algal rate of increase is affected by light intensity,

> plot(Light,rmax)

creates a plot. A linear regression seems reasonable. Don’t close this plot window:
we’ll soon be adding to it.

To perform linear regression we create a linear model using the lm() function:

> fit = lm(rmax~Light)
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This produces no output whatsoever, but it has created fit as an object, i.e. a data
structure consisting of multiple parts, holding the results of a regression analysis with
rmax being modeled as a function of Light. Unlike most statistics packages, R rarely
produces automatic summary output from an analysis. Statistical analyses inR are done
by creating a model, and then giving additional commands to extract desired information
about the model or display results graphically.

To get a summary of the results, enter the command > summary(fit) . Model objects
are set up in R (more on this later) so that the function summary “knows” that fit was
created by lm, and produces an appropriate summary of results for an lm object:

Call:

lm(formula = rmax ~ Light)

Residuals:

Min 1Q Median 3Q Max

-0.5478 -0.2607 -0.1166 0.1783 0.7431

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.580952 0.244519 6.466 0.000116 ***

Light 0.013618 0.004317 3.154 0.011654 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.4583 on 9 degrees of freedom

Multiple R-Squared: 0.5251, Adjusted R-squared: 0.4723

F-statistic: 9.951 on 1 and 9 DF, p-value: 0.01165

[If you’ve had a statistics course the output will make sense to you. The table of coef-
ficients gives the estimated regression line as rmax = 1.580952 + 0.013618× Light, and
associated with each coefficient is the standard error of the estimate, the t-statistic value
for testing whether the coefficient is nonzero, and the P -value corresponding to t. Below
the table, the adjusted R-squared gives the estimated fraction of the variance explained
by the regression line, and the p-value in the last line is an overall test for significance
of the model against the null hypothesis that the response variable is independent of the
predictors].

Adding the regression line to the plot of the data is similarly accomplished by a function
taking fit as its input [Note: if you closed the plot of the data, you will need to create
it again in order to add the regression line]

> abline(fit)
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Figure 1: Graphical summary of regression analysis

You can also “interrogate” fit directly. Type > names(fit) to get a list of the com-
ponents of fit.

[1] "coefficients" "residuals" "effects" "rank"

[5] "fitted.values" "assign" "qr" "df.residual"

[9] "xlevels" "call" "terms" "model"

Components of an object are extracted using the “$” symbol. For example, >
fit$coeffficients yields the regression coefficients

(Intercept) Light

1.58095214 0.01361776

4 Script files and data files

Modeling and complicated data analysis are often accomplished more efficiently using
scripts, which are a series of commands stored in a text file. As of this writing, only the
MacOS version has a built-in script editor; with others you need to use an external text
editing program (e.g. Windows Notepad or PFE).

Most programs for working with models or analyzing data follow a simple pattern of
program parts:
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1. “Setup” statements.

2. Input some data from a file or the keyboard.

3. Carry out the calculations that you want.

4. Print the results, graph them, or save them to a file.

For example, a script file might

1. Load some libraries, or run another script file that creates some functions (more
on functions later).

2. Read in from a text file the parameter values for a predator-prey model, and the
numbers of predators and prey at time t = 0.

3. Calculate the population sizes at times t = 1, 2, 3, . . . , T .

4. Graph the results, and save the graph to disk for including in your term project.

Even for relatively simple tasks, script files are useful for build up a calculation step-by-
step, making sure that each part works before adding on to it.

As a first example, the file Intro1.R has the commands from the interactive regression
analysis. Important: before working with an example file, create a personal copy in
some location on your own computer. We will refer to this location as your temp folder.
At the end of a lab session you must move files onto your personal disk (or email them
to yourself).

Now open your copy of of Intro1.R. In your editor, select and Copy the entire text of
the file, and then Paste the text into the R console window. This has the same effect as
entering the commands by hand into the console: they will be executed and so a graph
is displayed with the results. Cut-and-Paste allows you to execute script files one piece
at a time (which is useful for finding and fixing errors). The source function allows you
to run an entire script file, e.g.

> source("c:/temp/Intro1.R")

Source’ing can also be done in point-and-click fashion via the File menu on the console
window.

Another important time-saver is loading data from a text file. Grab copies of Intro2.R
and ChlorellaGrowth.txt from the course folder to see how this is done. In Chlorel-
laGrowth.txt the two variables are entered as columns of a data matrix. Then instead
of typing these in by hand, the command

X=read.table("c:\\temp\\ChlorellaGrowth.txt")
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Figure 2: Graphical summary of regression analysis using log of light intensity

reads the file and puts the data values into the variable X. NOTE that in this line the
path to the file has to be specified; you will need to edit the file so that it uses correct
path to your temp folder. Also note that there are two different ways to specify paths: a
single forward slash (as in the source) command just above, or a double backslash as in
the read.table command. R understands either of these, but a single backslash won’t
work.

The variables are then extracted from X with the commands

Light=X[,1]; rmax=X[,2];

Think of these as shorthand for “Light = everything in column 1 of X”, and “rmax =
everything in column 2 of X” (we’ll learn about working with matrices later). From there
out it’s the same as before, with some additions that put set the axis labels and add a
title.

Exercise 4.1 Make a copy of Intro2.R under a new name, and modify the copy so
that it does linear regression of algal growth rate on the natural log of light intensity,
LogLight=log(Light), and plots the data appropriately. You should end up with a
graph sort of like Figure 2.

Exercise 4.2 Run Intro2.R, then enter the command plot(fit) in the console and
follow the directions in the console. Figure out what just happened by entering ?plot.lm
to bring up the Help page for the function plot.lm that carries out a plot command for
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an object produced by lm. [This is one example of how R uses the fact that statistical
analyses are stored as model objects. fit “knows” what kind of object it is (in this case
an object of type lm), and so plot(fit) invokes a function that produces plots suitable
for an lm object.] Answer: R produced a series of diagnostic plots exploring whether or
not the fitted linear model is a suitable fit to the data. In each of the plots, the 3 most
extreme points (the most likely candidates for “outliers”) have been identified according
to their sequence in the data set.

Exercise 4.3 The axes in plots are scaled automatically, but the outcome is not always
ideal (e.g. if you want several graphs with exactly the same axes limits). You can control
scaling using the xlim and ylim arguments in plot:

plot(x,y,xlim=c(x1,x2), [other stuff])

will draw the graph with the x-axis running from x1 to x2, and using ylim=c(y1,y2)
within the plot() command will do the same for the y axis.

Create a plot of growth rate versus Light intensity with the x axis running from 0 to 120,
and the y axis running from 1 to 4.

Exercise 4.4 Several graphs can be placed within a single figure by using the par
function (short for “parameter”) to adjust the layout of the plot. For example the
command

par(mfrow=c(m,n))

divides the plotting area into m rows and n columns. As a series of graphs are drawn,
they are placed along the top row from left to right, then along the next row, and so
on. mfcol=c(m,n) has the same effect except that successive graphs are drawn down the
first column, then down the second column, and so on.

Save Intro2.R with a new name and modify the program as follows. Use mfcol=c(2,1)
to create graphs of growth rate as a function of Light, and of log(growth rate) as a
function of log(Light) in the same figure. Do the same again, using mfcol=c(1,2).

Exercise 4.5 * Use ?par to read about other plot control parameters that can be set
using par(). Then draw a 2 × 2 set of plots, each showing the line y = 5x + 3 with x
running from 3 to 8, but with 4 different line styles and 4 different line colors.

Exercise 4.6 *Modify one of your scripts so that at the very end it saves the plot to disk.
In Windows you can do this with savePlot, otherwise with dev.print. Use ?savePlot,
?dev.print to read about these functions. Note that the argument filename can include
the path to a folder, for example in Windows you can use

filename="c:/temp/Intro2Figure".

(Remember, how you specify paths is OS-dependent)

[Note: These are really exercises in using the Help system, with the bonus that you
learn some things about plot. (Let’s see, we know plot can graph data points (rmax
versus Light and all that). Maybe it can also draw a line to connect the points, or just
draw the line and leave out the points. That would be useful. So let’s try ?plot and see
if it says anything about lines...Hey, it also says that graphical parameters can be
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aov, anova Analysis of variance or deviance
glm Generalized linear models
gam Generalized additive models (in library mgcv)
nls Fit nonlinear models by least-squares (in library nls)
lme,nlme Linear and nonlinear mixed-effects models (in library

nlme)
boot Library: bootstrapping functions
modreg Library: nonparametric regression (more such in libraries

fields, KernSmooth, logspline, sm and others)
multiv Library: multivariate analysis
survival Library: survival analysis
tree Library: tree-based regression

Table 2: A few of the functions and libraries in R for statistical modeling and data
analysis. There are many more, but you will have to learn about them somewhere else.

given as arguments to plot, so maybe I can set line colors inside the plot command
instead of using par all the time....) The Help system can be quite helpful once you get
used to it and get the habit of using it often].

5 Statistics in R

Some of the important functions and libraries (collections of functions) for statisti-
cal modeling and data analysis are summarized in Table 2. The book Modern Ap-
plied Statistics with S by Venables and Ripley gives a good practical overview, and
a list of available libraries and their contents can be found at the main R website
(www.cran.r-project.org, and click on Package sources). For the most part, we
will not be concerned here with this side of R.

6 Vectors

Vectors and matrices (1- and 2-dimensional rectangular arrays of numbers) are pre-
defined data types in R . Operations with vectors and matrices may seem a bit abstract
now, but we need them to do useful things later.

We’ve already seen two ways to create vectors in R :
1. A command in the console window or a script file listing the values, such as

> initialsize=c(1,3,5,7,9,11).
2. Using read.table():

initialsize=read.table("c:\\temp\\initialdata.txt")
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A vector can then be used in calculations as if it were a number (more or less)

> finalsize=initialsize+1; newsize=sqrt(initialsize); finalsize; newsize;

[1] 2 4 6 8 10 12

[1] 1.000000 1.732051 2.236068 2.645751 3.000000 3.316625

Notice that the operations were applied to every entry in the vector. Similarly, commands
like initialsize-5, 2*initialsize, initialsize/10 apply subtraction, multiplica-
tion, and division to each element of the vector. The same is true for

> initialsize^2;

[1] 1 9 25 49 81 121

In R the default is to apply functions and operations to vectors in an element by ele-
ment manner; anything else (e.g. matrix multiplication) is done using special notation
(discussed below). Note: this is the opposite of Matlab, where matrix operations are
the default and element-by-element requires special notation.

6.1 Functions for creating vectors

A set of regularly spaced values can be created with the seq function, whose syntax is
x=seq(from,to,by) or x=seq(from,to)

The first form generates a vector (from,from+by,from+2*by,...) with the last entry
not extending further than than to. In the second form the value of by is assumed to
be 1 or -1, depending on whether from or to is larger. There are also two shortcuts for
creating vectors with by=1:

> 1:8; c(1:8);

[1] 1 2 3 4 5 6 7 8

[1] 1 2 3 4 5 6 7 8

Exercise 6.1 Use seq to create the vector v=(1 5 9 13), and to create a vector going
from 1 to 5 in increments of 0.2 .

A constant vector such as (1,1,1,1) can be created with rep function, whose basic
syntax is rep(values,lengths) . For example,

> rep(3,5)

[1] 3 3 3 3 3

created a vector in which the value 3 was repeated 5 times. rep(values,lengths) can
also be used with a vector of values and their associated lengths, for example
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seq(from,to,by=1) Vector of evenly-spaced values, default increment = 1)
c(u,v,...) Combine a set of numbers and/or vectors into a single

vector
rep(a,b) Create vector by repeating elements of a by amounts in

b

as.vector(x) Convert an object of some other type to a vector
hist(v) Histogram plot of value in v
mean(v),var(v),sd(v) Estimate of population mean, variance, standard devi-

ation based on data values in v
cor(v,w) Correlation between two vectors

Table 3: Some important R functions for creating and working with vectors. Many of
these have other optional arguments; use the help system (e.g. ?cor) for more information.
The statistical functions such as var regard the values as samples from a population and
compute an estimate of the population statistic; for example sd(1:3)=1.

> rep( c(3,4),c(2,5) )

[1] 3 3 4 4 4 4 4

The value 3 was repeated 2 times, followed by the value 4 repeated 5 times.

Some of the main functions for creating and working with vectors are listed in Table 3.
R also has numerous functions for creating vectors of random numbers with various dis-
tributions, that are useful in simulating stochastic models. Most of these have a number
of optional arguments, which means in practice that you can choose to specify their
value, or if you don’t a default value is assumed. For example,

> rnorm(100)

yields 100 random numbers with a Normal (Gaussian) distribution with mean=0, stan-
dard deviation=1. But

> rnorm(100,2,5)

yields 100 random numbers from a Gaussian distribution with mean=2, standard devi-
ation=5. The existence of default values for some arguments of a function is indicated
by writing (for example) rnorm(n,mu=0,sd=1). Since no default value is given for n,
the user must supply one: rnorm() gives an error message.

Exercise 6.2 Generate a vector of 5000 random numbers from a Gaussian distribution
with mean=3, standard deviation=2. Use hist to visualize the distribution of values,
and the functions mean, sd to estimate the population mean and standard deviation
from the “data” values in the vector.

Some of the functions for creating length-n vectors of random numbers are listed in
Table 4. Functions to evaluate the corresponding probability distribution functions are
also available. For a listing use the Help system (?Normal, ?Uniform, ?Lognormal, etc.
for lists of the available functions for each distribution family). We will see soon some
examples of using these functions to simulate models with random components to their
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rnorm(n,mean=1,sd=1) Gaussian distribution(mean=mu, standard devia-
tion=sd)

runif(n,min=0,max=1) Uniform distribution on the interval (min,max)
rbinom(n,size,prob) Binomial distribution with parameters #trials N=size,

probability of success p=prob.
rpois(n,lambda) Poisson distribution with mean=lambda
rbeta(n,shape1,shape2) Beta distribution on the interval [0, 1] with shape para-

meters shape1,shape2

Table 4: Some of the main R function for generating vectors of random numbers. To
create random matrices, these can be reshaped using matrix().

dynamics.

6.2 Vector addressing

Often it is necessary to extract a specific entry or other part of a vector. This is done
using subscripts, for example

> q=c(1,3,5,7,9,11); q[3]

[1] 5

q[3] extracts the third element in the vector q. You can also access a block of elements
using the functions for vector construction, e.g.

v=q[2:5]; v

[1] 3 5 7 9

This has extracted 2nd through 5th elements in the vector. If you enter v=q[seq(1,5,2)],
what will happen? Try it and see, and make sure you understand what happened.

Extracted parts of a vector don’t have to be regularly spaced. For example

> v=q[c(1,2,5)]; v

[1] 1 3 9

Addressing is also used to set specific values within a vector. For example,

> q[1]=12

changes the value of the first entry in q while leaving all the rest alone, and



7 MATRICES 15

> q[c(1,3,5)]=c(22,33,44)

changes the 1st, 3rd, and 5th values.

Exercise 6.3write a one-line command to extract a vector consisting of the second,
first, and third elements of q in that order.

You may be wondering if vectors in R are row vectors or column vectors (if you don’t
know what those are, don’t worry: we’ll get to it later). The answer is “both and
neither”. Vectors are printed out as row vectors, but if you use a vector in an operation
that succeeds or fails depending on the vector’s orientation, R will assume that you want
the operation to succeed and will proceed as if the vector has the necessary orientation.
For example, R will let you add a vector of length 5 to a 5 × 1 matrix or to a 1 × 5
matrix, in either case yielding a matrix of the same dimensions.

Exercise 6.4 Write a script file that computes values of y =
(x− 1)
(x+ 1)

for x = 1, 2, · · · , 10,
and plots y versus x with the points plotted and connected by a line.

Exercise 6.5 The sum of the geometric series 1+r+r2+r3+...+rn approaches the limit
1/(1 − r) for r < 1 as n → ∞. Take r = 0.5 and n = 10, and write a one-statement
command that creates the vector G = c(r0, r1, r2, ..., rn). Compare the sum of this vector
to the limiting value 1/(1− r). Repeat this for n = 50.

7 Matrices

7.1 Creating matrices

Like vectors, matrices can be created by reading in values from a data file using
read.table. Matrices of numbers can also be entered by creating a vector of the matrix
entries, and then reshaping them to the desired number of rows and columns using the
function matrix. For example

> X=matrix(c(1,2,3,4,5,6),2,3)

takes the values 1 to 6 and reshapes them into a 2 by 3 matrix.

> X

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

Note that values in the data vector are put into the matrix column-wise, by default. You
can change this by using the optional parameter byrow. For example
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> A=matrix(1:9,3,3,byrow=T); A

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

[3,] 7 8 9

R will re-cycle through entries in the data vector, if need be, to fill out a matrix of the
specified size. So for example

matrix(1,50,50)

creates a 50× 50 matrix of all 1’s.
Exercise 7.1 Use a command of the form X=matrix(v,2,4) where v is a data vector,
to create the following matrix X

[,1] [,2] [,3] [,4]

[1,] 1 1 1 1

[2,] 2 2 2 2

Exercise 7.2 Use rnorm and matrix to create a 5 × 7 matrix of Gaussian random
numbers with mean 1 and standard deviation 2.

Another useful function for creating matrices is diag. diag(v,n) creates an n×n matrix
with data vector v on its diagonal. So for example diag(1,5) creates the 5× 5 identity
matrix, which has 1’s on the diagonal and 0 everywhere else.

Finally, in Windows one can use the data.entry function. This function can only edit
existing matrices, but for example (try this now!!)

A=matrix(0,3,4); data.entry(A)

will create A as a 3× 4 matrix, and then call up a spreadsheet-like interface in which the
values can be changed to whatever you need.

7.2 cbind and rbind

If their sizes match, vectors can be combined to form matrices, and matrices can be
combined with vectors or matrices to form other matrices. The functions that do this
are cbind and rbind.

cbind binds together columns of two objects. One thing it can do is put vectors together
to form a matrix:

> C=cbind(1:3,4:6,5:7); C

[,1] [,2] [,3]

[1,] 1 4 5

[2,] 2 5 6

[3,] 3 6 7
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matrix(v,m,n) m× n matrix using the values in v
data.entry(A) call up a spreadsheet-like interface to edit the values in A
diag(v,n) diagonal n× n matrix with v on diagonal, 0 elsewhere
cbind(a,b,c,...) combine compatible objects by binding them along columns
rbind(a,b,c,...) combine compatible objects by binding them along rows
as.matrix(x) convert an object of some other type to a matrix, if possible
outer(v,w) “outer product” of vectors v,w: the matrix whose (i, j)th

element is v[i]*w[j]
iden(n) n× n identity matrix (in boot library)
zero(n,m) n×m matrix of zeros (in boot library)
dim(X) dimensions of matrix X. dim(X)[1]=# rows,

dim(X)[2]=# columns

Table 5: Some important functions for creating and working with matrices. Many of
these have additional optional arguments; use the Help system for full details.

Remember that R interprets vectors as row or column vectors according to what you’re
doing with them. Here it treats them as column vectors so that columns exist to be
bound together. On the other hand,

> D=rbind(1:3,4:6); D

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

treats them as rows. Now we have two matrices that can be combined.

Exercise 7.3 Verify that rbind(C,D) works, cbind(C,C) works, but cbind(C,D)
doesn’t. Why not?

7.3 Matrix addressing

Matrix addressing is like vector addressing except that you have to specify both the row
and column, or range of rows and columns. For example q=A[2,3] sets q equal to 6,
which is the (2nd row, 3rd column) entry of the matrix A that you recently created, and

> A[2,2:3];

[1] 5 6

> B=A[2:3,1:2]; B

[,1] [,2]

[1,] 4 5

[2,] 7 8
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There is an easy shortcut to extract entire rows or columns: leave out the limits.

> first.row=A[1,]; first.row

[1] 1 2 3

> second.column=A[,2]; second.column;

[1] 2 5 8

As with vectors, addressing works in reverse to assign values to matrix entries. For
example,

> A[1,1]=12; A

[,1] [,2] [,3]

[1,] 12 2 3

[2,] 4 5 6

[3,] 7 8 9

The same can be done with blocks, rows, or columns, for example

> A[1,]=runif(3); A

[,1] [,2] [,3]

[1,] 0.1911789 0.07919515 0.798139

[2,] 4.0000000 5.00000000 6.000000

[3,] 7.0000000 8.00000000 9.000000

(see Table 4 to remind yourself about runif).

Exercise 7.4 Write a script file to do the following. (a) Use runif to construct a 5×5
matrix B of random numbers with a uniform distribution between 0 and 1. (b) Extract
from it the second row, the second column, and the 3×3 matrix of the values that are
not at the margins (i.e. not in the first or last row, or first or last column). (c) Use seq
to replace the values in the first row of B by 2 5 8 11 14.

8 Iteration (“Looping”)

8.1 For-loops

Loops make it easy to do the same operation over and over again, for example:

• Solving a model to make population forecasts 1 year ahead, then 2 years ahead,
then 3, etc.

• Simulating a model multiple times with different parameter values.
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There are two kinds of loops in R : for loops, and while loops. A for loop runs for a
specified number of steps:

for (variable in vector) {

commands

}

Here’s an example (in Loop1.R):

# initial population size

initsize=4;

# create vector to hold results and store initial size

popsize=rep(0,10); popsize[1]=initsize;

# calculate population size at times 2 through 10, write to Command Window

for (n in 2:10) {

popsize[n]=2*popsize[n-1];

x=log(popsize[n]);

cat(n,x,"\n");

}

plot(1:10,popsize,type="l");

The first time through the loop, n=2. The second time through, n=3. When it reaches
n=10, the for-loop is finished and R starts executing any commands that occur after the
end of the loop. The result is a table of the log population size in generations 2 through
10.

Note also the cat function (short for “concatenate”) that prints results to the console
window. cat converts its arguments to character strings, concatenates them, and then
prints them. The "\n" argument is a line-feed character (as in C) so that each (n,x)
pair is put on a separate line.

If this discussion of looping doesn’t make sense to you, stop now and get help. Loops
are essential for modeling.

Exercise 8.1 Write a script file that uses two for-loops, one after the other, to create
the following 5×5 matrix A.

0 1 2 3 4
0.1 0 0 0 0
0 0.2 0 0 0
0 0 0.3 0 0
0 0 0 0.4 0
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Exercise 8.2 Suppose that while doing fieldwork in some distant land you and your
assistant have picked up a parasite that grows exponentially until treated. Your case is
more severe than your assistant’s: on return to Ithaca there are 400 parasites in you,
and only 120 in your assistant. However, your field-hardened immune system is more
effective. In you the number of parasites grows by 10 percent each day, while in your
assistant they increase by 20 percent each day. That is,

n(0) = 400, n(j + 1) = 1.1n(j) (you)
m(0) = 120,m(j + 1) = 1.2m(j) (your assistant)

Write a script file Parasite1.R that uses a for-loop to compute the number of parasites
in your body and your assistant’s over the next 30 days, and then draws a single plot
of both on log-scale (i.e. log(n(j)) and log(m(j)) versus time for 30 days). [This could
be done without a loop, but we’ll soon be extending this script to do things that require
loops]. Notes: (1) For efficiency, compute all values of n and m first, then take logs.
(2) One way to plot two curves on one graph is with matplot. It works like plot
but matplot(x,A) plots each column of a matrix A as a separate curve. In this case
A=cbind(log(n),log(m)) will create the matrix you need, assuming n andm are column
vectors.

Exercise 8.3 Modify Parasite1.R so that the parasite growth rates are random, in
particular so that on day j the parasite loads increase by factors

ri(j) = r̃ie
0.1Zi(j)

(here r1 is for you, and r2 is for your assistant), where each Zi(j) is random with a Normal
distribution, mean=0 and sd=1, and r̃1 = 0.1 and r̃2 = 0.2. The model equations are
then

n(0) = 400, n(j + 1) = (1 + r1(j))n(j) (you)
m(0) = 120, m(j + 1) = (1 + r2(j))m(j) (assistant)

Have the script file plot n and m over time, on log scale. if you’ve done this right, the
results will be different each time you run the script. Save this script file as Parasite2.R
for use later.

Exercise 8.4 Write a script file that uses a for-loop to calculate solutions of the difference
equation model

N(j + 1) = r(j)N(j)/(1 +N(j)), N(1) = 1

for j = 2, 3, 4, · · · , 13, where r(j) = 2e−0.2j. Write your script so that all values of r(j)
are computed and stored in a vector before the start of the for-loop.

Exercise 8.5 Modify your script file from the previous exercise so that it reads a list of
12 positive numbers from a text file named r.txt into an vector named r, and then uses
a for-loop to calculate the values of N(j). You should find r.txt in the course folder.
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8.2 Nested loops

Several for loops can be nested within each other, as in the example below. It is impor-
tant to notice that the second loop is completely within the first. Loops must be either
nested (one completely inside the other) or sequential (one starts after the previous
one ends).

A=matrix(0,3,3); (1)

for (row in 1:3) { (2)

for (col in 1:3) { (3)

A[row,col]=row*col (4)

} (5)

} (6)

A; (7)

Type the example above into a script file (without the line numbers!) and run it; the
result should be

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 2 4 6

[3,] 3 6 9

Line 1 creates A as a matrix of all zeros, which is then filled in with meaningful values
as the program runs. Line 2 starts a loop over the rows of A, and immediately in line 3
a loop over the columns is started. To fill in the matrix we need to consider all possible
values for the pair (row, col). So for row=1, we need to consider col=1,2,3. Then for
row=2 we also need to consider col=1,2,3, and the same for row=3. That’s what the
nested for-loops accomplish. For row=1 (as requested in line 2), the loop in lines 3-5 is
executed until it ends. Then we get to the end in line 6, at which point the loop in line
2 moves on to row=2, and so on.

Nested loops are useful for running a simulation many times, for example with different
parameters or to look at the average over many runs of a stochastic model. For example
(Loop2.R),

p=rep(0,5); (1)

for (init in c(1,5,9)){ (2)

p[1]=init; (3)

for (n in 2:5) { (4)

p[n]=2*p[n-1] (5)

cat(init,n,p[n],"\n"); (6)

} (7)

} (8)
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Line 1 creates the vector p. Line 2 starts a loop over initial population sizes Lines 4-7
do a “population growth” simulation Line 8 then closes the loop over initial sizes

The result that the population growth iteration is done repeatedly, for a series of values
of the initial population size. To make the output a bit nicer we can add some headings
as the program runs - source Loop3.R and then look at the file to see how that was
done.

Exercise 8.6 Modify your script file Parasite2.R so that it
(1) uses nested for-loops to compute 10 simulations of the parasite load in your body
(drawing different values of the Z’s for each time t in each solution), and stores the
results in a matrix such that the jth column of each matrix holding the results from the
jth simulation of the model.
(2) then uses another loop to compute, and store in vectors, the mean and standard
deviation of the 10 simulations as a function of time
(3) produces a 2× 1 plot (i.e. with par(mfrow= ...)) showing the mean and standard
deviation as a function of time.
Save this script as Parasite3.R.

8.3 While-loops

A while loop lets an iteration continue until some condition is satisfied. For example,
we can solve a model until some variable reaches a threshold. The format is

while(condition){

commands

}

The loop repeats as long as the condition remains true. Loop4.R contains an example:
read it and then source it. Notice:

1. Although the condition in the while loop said while(popnow<1000) the last popu-
lation value was > 1000. That’s because the loop condition is checked before the
commands in the loop are executed. In generation 6 the population size is 640, so
the condition is satisfied and the loop runs through one more time. After that the
population size is 1280, so the condition is not satisfied, and the program moves on
to statements after the loop.

2. Since we don’t know in advance how many iterations will occur, we can’t create in
advance a vector to hold the results. Instead, a vector of results (called popsize)
is built up one step at a time. Before the loop starts, it is initialized to con-
sist of the initial population size — (popsize=initsize;). Then at each step of
the loop, the population “now” is added to the end of textttpopsize by the line
popsize=c(popsize,popnow).
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x < y less than
x > y greater than
x <= y less than or equal to
x >= y greater than or equal to
x == y equal to

Table 6: Some comparison operators in R . Use ?Comparison to learn more.

3. When the loop ends and we want to plot the results, the “y-values” are popsize,
and the x values need to be 0:something. To find “something”, the length function
is used to find the length of popsize.

Another way to accomplish the same thing is with a counter, a variable that is used
to keep track of how many times the loop has executed. Look at Loop5.R to see an
example. The key bit is:

# set initial size and initialize counter for length of popsize

popsize=10; j=1;

# calculate new population size, and update the counter

while(popsize[j]<1000) {

popsize[j+1]=2*popsize[j];

j=j+1;

}

Here j is used to keep track of the length of popsize: how many values have we computed
so far? What happens inside the loop should be illegal, but R lets you get away with
it. The first time through, j=1, so the first line of the loop is computing popsize[2].
There is no such thing as popsize[2]! But R assumes you want there to be such
a thing, so it turns popsize into a vector of length 2. The same thing happens each
time through the loop: as you compute a new population size and try to stick it into a
nonexistent location in popsize, R expands popsize so that the location you need does
exist. This is useful but dangerous, since in most other programming languages it can
create unexpected errors or program crashes if you refer to a nonexistent part of a vector
or matrix.

The conditions controlling a while loop are built up from operators that compare two
variables (Table 6). These operators return a logical value of TRUE or FALSE. For
example, try:

> a=1; b=3; c=a<b; d=(a>b); c; d;

The parentheses around (a>b) are optional but can be used to improve readability in
script files.
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Exercise 8.7 Modify your script fileParasite1.R so that it uses a while-loop to compute
the number of parasites in you and your assistant so long as you are sicker than your
assistant (i.e. so long as n > m) and stops when your assistant is sicker than you.

8.4 More on comparison operators

When we compare two vectors or matrices of the same size, or compare a number with
a vector or matrix, comparisons are done element-by-element. For example,

> x=1:5; b=(x<=3); b

[1] TRUE TRUE TRUE FALSE FALSE

So if x and y are vectors, then (x==y) will return a vector of values giving the element-
by-element comparisons. If you want to know whether x and y are identical vectors,
use identical(x,y) which returns a single value: TRUE if each entry in x equals the
corresponding entry in y, otherwise FALSE. You can use ?Logical to read more about
logical operators.

R also does arithmetic on logical values, treating TRUE as 1 and FALSE as 0. So
sum(b) returns the value 3, telling us that 3 entries of x satisfied the condition (x<=3).
This is useful for running multiple simulations and seeing how often one outcome occurred
rather than another.

More complicated conditions are built by using logical operators to combine compar-
isons:

! Negation

& && AND

| || OR

OR is non-exclusive, meaning that x|y is true if x is true, if y is true, or if both x and
y are true. For example, try
>> a=c(1,2,3,4); b=c(1,1,5,5); (a<b)&(a>3); (a<b)|(a>3);
and make sure you understand what happened. The two forms of AND and OR differ
in how they handle vectors. The shorter one does element-by-element comparisons; the
longer one only looks at the first element in each vector.

8.5 A simulation project

Project Exercise 8.8 Write a script file that simulates geometric population growth
with spatial variation, defined as follows. The state variables for the model are the
numbers of individuals in a series of L = 20 patches along a line (L stands for “length
of the habitat”) .
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1 2 3 4 ... ... L-1 L

Let Nj(t) denote the number of individuals in patch j (j = 1, 2, . . . , L) at time t (t =
1, 2, 3, . . . ), and let λj be the geometric growth rate in patch j. The dynamic equations
for this model consists of two steps:

1. Geometric growth within patches:

Mj(t) = λjNj(t) for all j. (1)

2. Dispersal between neighboring patches:

Nj(t+ 1) = (1− 2d)Mj(t) + dMj−1(t) + dMj+1(t) for 2 ≤ j ≤ L− 1 (2)

where 2d is the “dispersal rate”. We need special rules for the end patches. For
this exercise assume reflecting boundaries: ones who go out into the void have the
sense to come back. That is, there is no leftward dispersal out of patch 1 and no
rightward dispersal out of patch L:

N1(t+ 1) = (1− d)M1(t) + dM2(t)
NL(t+ 1) = (1− d)ML(t) + dML−1(t)

(3)

0 Write your program to start with 5 individuals in each patch at time t=1, iterate the
model up to t=50, and graph the total population size (total number in all patches)
over time. Use the following growth rates: λj = 0.9 in the left half of the patches, and
λj = 1.2 in the right.
0 Write your program so that d and L are parameters, in the sense that the first line of
your script file reads d=0.1; L=20; and the program would continue to run if these were
changed other values.

Notes and hints:

1. This is a real programming problem. Think first, then start writing your code.

2. One thing to notice is that this model is not totally different from Loop1.R, in that
you start with a founding population at time 1, and use a loop to compute successive
populations at times 2,3,4, and so on. The difference is that the population is
described by a vector rather than a number. Therefore, to store the population
state over time you will need a matrix njt with L columns. Then njt[t,] is the
population state vector at time t.

3. Vectorize. R does vector/matrix operations much faster than loops. Set up your
calculations so that computing Mj(t) = λjNj(t) for j = 1, 2, · · · , L is a one-line
statement of the form a=b*c . Then for the dispersal step, if Mj(t), j = 1, 2, . . . , L
is stored as a vector mjt of length L, then what (for example) areMj(t) andMj±1(t)
for 2 ≤ j ≤ (L− 1)?
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Exercise 8.9 . Use the model (modified as necessary) to ask whether the spatial arrange-
ment of good versus bad habitat patches makes a difference for population growth rate.
For example, does it matter if all the good sites (λ > 1) are at one end or in the middle?
What if they aren’t all in one clump, but are spread out evenly (in some sense) across
the entire habitat? Be a theoretician: (a) Patterns will be easiest to see if good sites
and bad sites are very different from each other. (b) Patterns will be easiest to see if you
come up with a nice way to compare growth rates across different spatial arrangements
of patches. (c) Don’t confound the experiment by also changing the proportion of good
versus bad patches at the same time you’re changing the spatial arrangement.

Exercise 8.10 . Modify your script file for the model (or write it this way to begin
with...) so that the dispersal phase (equations 2 and 3) is done by calling a function
reflecting=function(Mt,d) whose arguments are the pre-dispersal population vector
M(t) and the dispersal parameter d, and which returns N(t+ 1), the population vector
after dispersal has taken place.

9 Branching

Another use of comparison operators is to let the “rules” for state variable dynamics
depend on the current values of state variables. The if statement lets us do this; the
basic format is

if(condition) {

some commands

}else{

some other commands

}

An if block can be set up in other ways, but the layout above, with the }else{ line to
separate the two sets of commands, can always be used.

If the “else” is to do nothing, you can leave it out:

if(condition) {

commands

}

Exercise 9.1 Look at and source a copy of Branch1.R to see an if statement which
makes the population growth rate depend on the current population size.

Exercise 9.2 Modify your Parasite2.R script so that the random variation in parasite
success is “good/bad” rather than Gaussian. Specifically, on “bad days” the parasites
increase by 10% while on “good days” they are beaten down by your immune system
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and they go down by 10%, and similarly for your assistant. That is,
Bad days: n(j + 1) = 1.1n(j), m(j + 1) = 1.2m(j)
Good days: n(j + 1) = 0.9n(j), m(j) = 0.8m(j)

Do this by using runif(1) and an if statement to “toss a coin” each day: if the random
value produced by runif for that day is < 0.25 it’s a good day, and otherwise it’s bad.

9.1 Nested if statements

More complicated decisions can be built up by nesting one if block within another, i.e.
the “other commands” under else can include an if block. Branch2.R uses elseif to
have population growth tail off in several steps as the population size increases:

for (i in 1:50) { (1)

if(popnow<250){ (2)

popnow=popnow*2; (3)

}else{ (4)

if(popnow<500){ (5)

popnow=popnow*1.5 (6)

}else{ (7)

popnow=popnow*0.95 (8)

} (9)

} (10)

popsize=c(popsize,popnow); (11)

} (12)

What does this accomplish?

• If popnow is still < 250, then line 3 is executed growth by a factor of 2 occurs. Since
the if condition was satisfied, the entire else block (line numbers 5-10 above) isn’t
looked at; R jumps line (11) and continues from there.

• If popnow is not < 250, R moves on to the else on line 4, and immediately
encounters the if on line 5.

• If popnow is < 500 the growth factor of 1.5 applies, and R then jumps to the end
and continues from there.

• If neither of the two if conditions is satisfied, the final else block is executed and
population declines by 5% instead of growing.

Exercise 9.3 Use nested if’s to write a script that draws a random number U between
0 and 1 using runif(1) and then writes to the console window “Small”, “Medium”, or
“Large” depending on whether U is ≤ 1/3, between 1/3 and 2/3, or ≥ 2/3.
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10 Writing your own functions

Functions (often called subroutines in other programming languages) allow you to break
a program into subunits. Each function is an independent little program, performing
a few related tasks and returning the results. This makes complex problems easier to
program, and makes it easier to see the logical flow of a large program. In addition, each
function can be written and tested independently, before you try to put all the pieces
together.

Also, many R functions for simulation and data analysis require that you specify your
model in the form of a function — for example, a system of differential equations that
you want to solve numerically, or a nonlinear model that you want to fit to experimental
data. The R function (for solving differential equations, doing nonlinear least squares,
etc.) is then “told” the name of your function, and does its job on your particular model.

The basic syntax for creating a function is as follows. Suppose [for the sake of an example]
you want a function mysquare that produces sums of squares: given vectors v and w, it
returns a vector consisting of the element-by-element sums of the squares of the elements
in the two vectors. The syntax is then:

mysquare=function(v,w) {

u=v^2+w^2;

return(u)

}

This code adds mysquare as an R command, just like sin or log. The variable u is
internal to the function; if you use mysquare in a program, the program won’t “know”
the value of u. You can save some typing by computing the final value within the return
statement:

mysquare=function(v,w) {return(v^2+w^2)}

Exercise 10.1 Type the above into a script file and run it, and then do
q=mysquare(1:4,1:4); q in the console window.

Schematically, a function is defined by a code block like this:

function.name=function(argument1,argument2,...) {

command;

command;

...

command;

return(value)

}



10 WRITING YOUR OWN FUNCTIONS 29

Functions can return several different values, by combining them into a list with named
parts.

mysquare2=function(v,w) {

q=v^2; r=w^2

return(list(v.squared=q,w.squared=r))

}

You can then extract the components in the usual way.

> x=mysquare2(1:4,2:5); names(x);

[1] "v.squared" "w.squared"

> x$v.squared

[1] 1 4 9 16

Functions can be placed anywhere in a script file. Once the code defining the function
has been executed within a session, the new function can be treated like any other R
command. However, user-defined functions “vanish” when you end a session. To
use them again in another session, the function code needs to be run again. Alternatively,
you can set things up (on your R at home) so that functions you use consistently are
automatically loaded whenever R starts; the next subsection describes how.

Exercise 10.2 Write a function stats(v) that takes as input a single vector, and returns
a list with named components average (mean of the values in the vector), and variance
(population variance estimated from the values in the vector, using var). Verify that
once you’ve sourced the function definition, you get

> stats(1:21);

$average

[1] 11

$variance

[1] 38.5

Exercise 10.3 Write a function to compute a forager’s expected rate of energy gain
R(t1, t2) in a Patch Model with two patch types, travel time T = 3, 70% patches of type
1 with gain function g1(t) = 2t

0.5, and 30% of type 2 with g2(t) = t
0.7. Recall that the

gain rate as a function of the GUTs ti in a Patch Model with multiple patch types is

R =

�
i

Pigi(ti)

T +
�
i

Pi(ti)
. Save this script as TwoPatchRate.R, we’ll be using it later.

Exercise 10.4 Write a script to simulate the random growth model

n(t+ 1) = λ(t)n(t), n(0) = 1
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with λ(t) = eZ(t) and Z(t) having a normal distribution with mean=0.05, sd=0.5. Have
your script do this using a function new.pop(nt) which computes and returns λ(t)nt
(here nt is a number, representing a value of n(t)).

Exercise 10.5 (a) Modify your script from the last exercise so that the input to new.pop
can be a vector rather than a single number, say nt = (n1, n2, n3, · · · , nd), and the output
is the vector with components niλi(t) with each λi having the distribution for λ specified
in the last exercise. Do this in such a way that the function does not use any loops. If
new.pop needs to know how long a vector nt is, remember the length function.
(b) Having done this, you can now modify your script so that it does many replicate
simulations of the random growth model, i.e.

ni(t+ 1) = λi(t)n(t), ni(0) = 1, i = 1, 2, · · · , d,

using a single loop on time t, rather than a nested loop over time t and population
number i (this results in much faster execution compared to a nested loop). [How: set
up n as a matrix with d columns, and 1’s in the first row. One call to new.pop with the
first row as input, returns values for the second row: n[2,]=new.pop(n[1,]). And so
on, as often as needed). Use matplot to display the results for t = 0, 1, · · · 50 and d = 20
replicate populations.

10.1 Autoloading functions at startup

If you’ve written some functions that you would like to have available every time you use
R , there’s a mechanism for having them load automatically at startup. It takes a bit of
work, but not much.

First, take all the functions you want auto-loaded, and copy them into a single file, for
example, c:/src/R/MyFunctions.R. Then look in the etc subfolder of your R folder,
and find the file Rprofile. Commands in Rprofile are executed whenever R is started.
You can edit this file, and at the end add a line like

source("c:/src/R/MyFunctions.R");

Then any functions in MyFunctions.R will be run at the start of each session.
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11 Solving differential equations

In addition to basic programming, R includes many pre-written functions that make it
relatively simple (compared to languages such as C or fortran) to do some complicated
things. A prime example is finding numerical solutions of systems of differential equations

dx/dt = f(t, x) (4)

Here t is time, and x is the state vector of the system, i.e.

x(t) = (x1(t), x2(t), · · · , xn(t))

where the xi(t) are the state variables of the model.

The first step is to write an R function to evaluate f in (4). For example, here is an
example of the Lotka-Volterra competition equations:

dx1/dt = x1(2− x1 − ax2)
dx2/dt = x2(3− x2 − bx1) (5)

and here is the function that you would write for it:

lotka=function(t,x,parms) {

a=parms[1]; b=parms[2];

xdot=rep(0,2);

xdot[1]=x[1]*(2-x[1]-a*x[2]);

xdot[2]=x[2]*(3-x[2]-b*x[1]);

return(list(xdot));

}

There’s a lot to digest in that. Here are the things to note:

1. The function must have input arguments (t,x,parms), even if only x is used to
compute the derivative. When you pass in an argument that isn’t used, R just
ignores it.

2. parms is a vector of parameter values for function. This allows you to write a
function with “free” parameters, so that you can see how solutions change as para-
meters are varied, without having to re-write the function for each new parameter
set. It also simplifies the process of fitting differential equations to data (we’ll be
doing this soon).

3. The derivative has to be returned as a list. There’s a good reason for this; if
you’re curious and have way too much free time on your hands, ?lsoda contains the
explanation. You’ve been warned.
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The second step is to use an R function that implements an algorithm for numerical
solution of differential equations. These are in the odesolve library, which has to be
loaded (at the command line or at the top of a script file) by

library(odesolve).

The “basic” solver is rk4 which implements the 4th-order Runge Kutta method with a
fixed time step. The format is

out=rk4(x0,times,func,parms)

• x0 is the value of the state vector at times[1]
• times is a vector of the times at which you want solution values
• func is the function specifying the model (such as the lotka function above)
• parms is the vector of parameter values passed to func

So here is an example using our lotka function:

x0=c(2,1);

times=(0:200)/10;

parms=c(0.5,0.5);

out=rk4(x0,times,lotka,parms)

matplot(out[,1],out[,2:3],type="l",ylim=c(0,3));

As the last line indicates, rk4 returns a matrix in which the first column gives the times at
which solution values were obtained, and the remaining columns give the (approximate)
state vector values.

You can do the same more compactly once you get the hang of it:

out=rk4(c(2,1),(1:200)/10,lotka,c(0.5,0.5))

That is, the values of the input arguments to rk4 are specified within the call, but
remember that values have to go in the order that the function expects. But try

out=rk4(c(2,1),lotka,(1:200)/10,c(0.5,0.5))

and the result is an error message, because rk4 is expecting a numeric vector of times in
the second slot, and instead it gets a function name.

The “industrial strength” solver is lsoda. lsoda is a “front end” to a general-purpose
differential equation solver (called, oddly enough, lsoda) that was developed at Lawrence
Livermore National Laboratory. The full calling format for lsoda is
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lsoda(y, times, func, parms, rtol=1e-06, atol=1e-06, tcrit=NULL,

jacfunc=NULL, verbose=FALSE, dllname=NULL, hmin=0, hmax=Inf)

Don’t panic. Because defaults are provided for everythying but the case-specific argu-
ments required by rk4, lsoda can be called in exactly the same way as rk4:

out=lsoda(x0,times,lotka,parms)

matplot(out[,1],out[,2:3],type="l",ylim=c(0,3));

For the most part you can get away with this, so for now we will.

Exercise 11.1 Write a script file that uses lsoda to replicate the results in Figure 3.7
of Bulmer chapter 3, for the classical Rosenzweig-MacArthur predator-prey model (n1 is
the prey, n2 the predator, and we write the model in the usual form)

dn1/dt = r1n1(1− n1/K1)− n2 a1n1
B + n1

dn2/dt = n2
a2n1
B + n1

− r2n2
(6)

and parameter values r1 = r2 = 1, a1 = a2 = 2, B = 200 with initial values n1(0) =
300, n2(0) = 50. The result to be replicated is that for K1 = 500 predator and prey
converge to an equilibrium, while for K1 = 650 they settle into a steady pattern of cyclic
oscillations. To graphically show what happens in each case, have your script file solve
the model from t = 0 to 100, and plot the densities of predator and prey populations as
a function of time.

Exercise 11.2 Modify your script file from the previous exercise to incorporate preda-
tor switching in the form of a type-III functional response. Specifically,
(a) add a parameter q > 1 affecting how the predator responds to changes in prey density:

dn1/dt = r1n1(1− n1/K1)− n2 a1n
q
1

Bq + nq1

dn2/dt = n2
a2n

q
1

Bq + nq1
− r2n2

(7)

(b) Use numerical solutions of the model (at judiciously chosen sets of parameter values)
to explore how the stability of the interaction is affected as the value of q increases from
1. At parameters giving a stable equilibrium for q = 1, can increasing q destabilize the
equilibrium and give rise to cycles? Conversely, at parameters giving rise to cycles when
q = 1, can increasing q stabilize the equilibrium and eliminate the cycling?

11.1 Additional arguments in lsoda

The most important of the additional arguments are rtol, atol, hmin, and hmax.
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rtol and atol control the accuracy that the solver tries to achieve (they stand for relative
and absolute error tolerances). lsoda gets from one time-value to another by taking small
steps, and adaptively adjusting their size (and number) to achieve the necessary accuracy,
in particular so that the error in computing each new value of state variable xi is less
than rtol |xi|+ atol. So small values of rtol and atol give more accurate solutions, but it
takes longer to do the computing.

hmin,hmax control the range of possible time-step sizes that can be used. Setting a
value for hmax is just a bit of added security, to avoid lsoda becoming over-confident
about how large a step it can take. This is most important when the model is explicitly
time-dependent, and you want to make sure that lsoda doesn’t jump over brief “shocks”
to the system. Setting hmin is a way to ensure that lsoda doesn’t grind down to taking
infinitely many, infinitely short time steps.
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12 Operations with Matrices and Vectors

A numerical function applied to a matrix acts element-by-element.

> A=matrix(c(1,4,9,16),2,2); A; sqrt(A);

[,1] [,2]

[1,] 1 9

[2,] 4 16

[,1] [,2]

[1,] 1 3

[2,] 2 4

The same is true for scalar multiplication and division. Try 2*A, A/3 and see what
you get.

If two matrices (or two vectors) are the same size, then you can do element-by-element
addition, subtraction, multiplication, division, and exponentiation:

A+B, A-B, A*B, A/B, A^B

NOTE: A∧B means each element in A raised to the power given by the corresponding
element in B. This is not what A ∧B means in Matlab. So for example:

if C =

}
1 2
3 4

]
then C ∧C =

}
11 22

33 44

]
Matrix-matrix and matrix-vector multiplication are indicated by the special no-
tation %*%. For example,

> v=1:2; A%*%v

[,1]

[1,] 19

[2,] 36

It’s important to remember that element-by-element is the default, becauseR ’s eagerness
to make things work can sometimes let errors get by without warning. So for example
suppose you had entered above

A*v

[,1] [,2]

[1,] 1 9

[2,] 8 32

Since you (inadvertently) “asked” for element-by-element multiplication, that’s what R
did. It ran out of entries in v before it ran out of entries in A, so it “recycled” through
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outer(v,w) outer product of vectors v and w
solve(A) inverse of matrix A
solve(A,B) solution x of the linear system Ax = b for each column b of

the matrix B
det(A) determinant of the matrix A
norm(A) matrix norm of A (several options)
eigen(A) eigenvalues and eigenvectors
t(A) transpose of A
apply(A,margin,fun) apply a function fun to the rows (margin=1) or columns

(margin=2) of matrix A, and return all resulting values
sapply(v,fun) apply a function fun to all elements in vector v, returning

a vector of values

Table 7: Some important functions for matrix-vector numerical calculations. Many of
these have additional optional arguments; use the Help system for full details

the elements of v as needed to make your command work.}
1 9
4 16

]
∗
}
1
2

]
=

}
1 ∗ 1 9 ∗ 1
4 ∗ 2 16 ∗ 2

]
The matrix algebra functions in R are front-ends for the “industry standard” numerical
libraries. Some of these functions are listed in Table 7. Some of these only work on
square matrices and will return an error if A is not square, in particular functions for
computing eigenvalues and eivenvectors.

Several functions exist in two versions corresponding to older (LINPACK, EISPACK)
and newer (BLAS,LAPACK,ATLAS) versions of these libraries. How you wind up using
which is a lesson in how R works, and we leave it to the next section.

12.1 Eigenvalues and eigenvectors

In this section we consider only square matrices, for which eigenvalues and eigenvectors
are defined. Recall that if Aw = λw (for A a square matrix, w a nonzero column vector,
and λ a real or complex number) then λ is called an eigenvalue and w is the corresponding
eigenvector of A.

If v is a row-vector such that vA = λv, then v is called a left eigenvector of A. The left
eigenvalues for a matrix are the same as the (right) eigenvalues. The left eigenvectors of
A are the same as the right eigenvectors of the transpose t(A).

eigen returns eigenvalues sorted by absolute value, with the dominant eigenvalue (mean-
ing, the one with the largest absolute value) first. (the general definition of absolute value,
which covers both real and complex numbers, is

|a+ bi| =
√
a2 + b2).
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For example,

A=matrix(1:9,3,3); vA=eigen(A); vA;

$values

[1] 1.611684e+01 -1.116844e+00 -9.357342e-17

$vectors

[,1] [,2] [,3]

[1,] -0.5598757 0.8251730 -0.3767961

[2,] -0.6879268 0.2238583 0.7535922

[3,] -0.8159780 -0.3774565 -0.3767961

As with the output from lm (you remember lm . . . ) vA is an object composed of two
components, whose names are values and vectors. The “$” is used to extract compo-
nents of a compound object, for example vA$values is the values part of vA, a vector
consisting of the sorted eigenvalues:

vA$values

[1] 1.611684e+01 -1.116844e+00 -9.357342e-17

The vectors component is a matrix whose columns are the corresponding eigenvectors,
sorted in the same order as the eigenvalues. That is,

j=1; A%*%vA$vectors[,j]-vA$values[j]*vA$vectors[,j];

[,1]

[1,] 0.000000e+00

[2,] -3.552714e-15

[3,] -3.552714e-15

Exercise 12.1 Verify that the output is also (0, 0, 0), apart from numerical error, for
j=2 and j=3. Explain in words what these calculations show.

Exercise 12.2 Enter the command names(vA) and see what results. From this, infer
what the names function does. Enter the command names(A) and infer the meaning of
the object NULL in R . Check your guess by using the Help menu on the console window:
select R language (standard) and type NULL into the popup window that appears.

To get the left eigenvectors of a matrix, you use eigen to compute the eigenvectors of
its transpose, t(A). So

vLA=eigen(t(A))$vectors

gets you the left eigenvectors of A.

Exercise 12.3 Compute vLA[,j]%*%A-vA$values[j]*vLA[,j] to verify the last claim
about left eigenvectors, for j=1 to 3.
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For stability analysis of differential equation models, the “dominant eigenvalue” of the
Jacobian matrix is the one with the largest real part. To find this we need to extract the
real parts of each eigenvalue and identify the largest one.

The help system (?complex) lists the R functions for working with complex numbers.
The one we need here is Re, which extracts the real parts of complex numbers.

Use data.entry to create the matrix

A =

 3 0 0
2 2 −3
0 3 1


and you should find that eigen(A)$values are

[1] 1.5+2.95804i 1.5-2.95804i 3.0+0.00000i.
The first two are a complex conjugate pair with absolute value 3.316625
(mod(eigen(A)$values) gets you the absolute values of the eigenvalues), but the third
one has the largest real part.

To have R do this for you, we use the which function to find where the real part is
maximized.

vA=eigen(A)$values; rmax=max(Re(vA));

j=which(Re(vA)==rmax);

lmax=vA[j]; vmax=eigen(A)$vectors[,j];

The first line uses max to compute the largest real part of any eigenvalue. In the second
line, which finds the indices at which the logical condition (Re(vA)==rmax) is TRUE, in
this case j=3. The third line then extracts the relevant entries from the lists of eigenvalues
and eigenvectors.

Exercise 12.4 Try the above on A=diag(c(3,1,3)) and see what you get for lmax and
vmax. Why?

Exercise 12.5 In this exercise we take an eigenvalue-based look at a simple (and partially
re-scaled) predator-prey model:

dx/dt = x(1− x/K)− yxq
dy/dt = cyxq −my (8)

with x= prey density, y=scaled predator density, and K, q, c,m positive constants. The
interior equilibrium for this model is at

x̄ = (m/c)1/q, ȳ = (x̄1−q)(1− x̄/K)
and the Jacobian matrix at a point (x, y) is}

1− 2x/K − qyxq−1 −xq
cqyxq−1 cxq −m

]
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As usual with a type-II functional response (0 < q < 1) the model exhibits a transition
from stability to cycles as K is increased (Figure 3).

(a) Write a function domreal=function(K,q,c,m) that computes and returns the
largest real part of any eigenvalue for the Jacobian of model (8) evaluated at the in-
terior equilibrium, as a function of the model parameters.
(b) Using your function, create a plot like that in Figure 3 panel (c), showing how the
eigenvalues change as K is gradually increased from 200 to 350 with other parameters
fixed at the values q = 0.5, c = 0.1,m = 1. (“gradually” means: compute enough val-
ues that you can plot a smooth curve as a function of K, rather than just two points
connected by a line).

Figure 3: Hopf bifurcation in predator-prey model (8) with parameters q = 0.5, c =
0.1,m = 1. As K increases, a pair of complex conjugate eigenvalues crosses the imaginary
axis in the complex plane.
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12.2 Eigenvector scalings

For a transition matrix model, the dominant right eigenvector w (i.e. the eigenvector
corresponding to the eigenvalue with largest absolute value) is the stable stage distribu-
tion, so we are most interested in relative proportions. To get those, w=w/sum(w). The
dominant left eigenvector v is the reproductive value, and it is conventional to scale those
relative to the reproductive value of a newborn. If newborns are class 1: v=v/v[1].

Exercise 12.6 : Write a script file which applues the above to the matrices

A =

 1 −5 0
6 4 0
0 0 2

 B =

 0 1 5
0.6 0 0
0 0.4 0.9


finding all the eigenvalues and then extracting the dominant one and the corresponding
left and right eigenvectors. For B, use the scalings defined above.

12.3 Eigenvalue sensitivities and elasticities

For an n × n matrix A with entries aij, the sensitivities sij and elasticities eij of the
dominant (largest absolute value) eigenvector can be computed as

sij =
∂λ

∂aij
=
viwj
�v, wX eij =

aij
λ
sij (9)

where λ is the dominant eigenvalue, v and w are dominant left and right eigenvalues,
and �v, wX is the inner product of v and w, computed in R as sum(v*w). So once λ, v,
and w have been found and stored as variables, it just takes some for-loops to compute
the sensitivies and elasticities.

vA=eigen(A); lambda=vA$values[1];

w=vA$vectors[,1]; w=w/sum(w);

v=eigen(t(A))$vectors[,1]; v=v/v[1];

vdotw=sum(v*w);

s=A; n=dim(A)[1];

for(i in 1:n) {

for(j in 1:n) {

s[i,j]=v[i]*w[j]/vdotw;

}

}

e=(s*A)/lambda;

Note how all the elasticities are computed at once in the last line. In R that kind of
“vectorized” calculation is much quicker than computing entries one-by-one in a loop.
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Even better is to use a built-in function that operates at the vector or matrix level. In
this case we can use outer (see Table 7 or ?outer) to completely eliminate the nested
do-loops:

vA=eigen(A); lambda=vA$values[1];

w=vA$vectors[,1]; w=w/sum(w);

v=eigen(t(A))$vectors[,1]; v=v/v[1];

s=outer(v,w)/sum(v*w);

e=(s*A)/lambda;

Vectorizing code to avoid or minimize loops is an important aspect of efficient R pro-
gramming. The functions apply or sapply are often useful in this regard and you should
look into them if you have a script that is running too slow because of loops.

Exercise 12.7 Construct the transition matrix A, and then find λ, v, w for an age-
structured model with the following survival and fecundity parameters.

Age-classes 1-6 are genuine age classes with survival probabilities (p1p2 · · · p6) =
(0.3, 0.4, 0.5, 0.6, 0.6, 0.7)

Note that pj = aj+1,j, the chance of surviving from age j to age j+1, for these ages. You
can create a vector p with the values above and then use a for-loop to put those values
into the right places in A.

Age-class 7 are adults, with survival 0.9 and fecundity 12.

Results: λ = 1.0419

A =



0 0 0 0 0 0 12
.3 0 0 0 0 0 0
0 .4 0 0 0 0 0
0 0 .5 0 0 0 0
0 0 0 .6 0 0 0
0 0 0 0 .6 0 0
0 0 0 0 0 .7 .9


w = (0.6303, 0.1815, 0.0697, 0.0334, 0.0193, 0.0111)
v = (1, 3.4729, 9.0457, 18.8487, 32.7295, 56.8328, 84.5886)

13 matrix or Matrix? Classes in R

This section can be skipped for now. It will make sense if you have previous experience
with object-oriented languages. Othewise, come back to it after you’ve worked for a while
with objects in R .
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Variables and other kinds of objects in R can be assigned a class attribute which tells
R what kind of object it is. As an example:

> g=matrix(0,5,5); class(g)

NULL

shows that the object g has not been assigned a class. On the other hand,

> library(Matrix); g=Matrix(0,5,5); class(g)

[1] "Matrix"

library(Matrix) loaded the Matrix library (which has some additional and higher-
accuracy routines for matrix algebra). g=Matrix(0,5,5) created a 5-by-5 matrix of
zeros, just as in the previous example, but this time the function Matrix assigned it a
class.

Class attributes allow R functions to exist in multiple versions (called “methods”), that
do different things to different classes of objects. You can list them using the methods
function, for example

> methods(det);

[1] "det.default" "det.LowerTriangular"

[3] "det.Matrix" "det.UnitLowerTriangular"

[5] "det.UnitUpperTriangular" "det.UpperTriangular"

So the effect of the command det(g) depends on g’s class. If g’s class is Matrix, det(g)
invokes det.Matrix to compute the determinant. If g’s class is LowerTriangular (a kind
of matrix) then deg(g) invokes det.LowerTriangular to compute the determinant, and
so on. If g doesn’t have a class for which a specific method exists, then det(g) invokes
det.default.

Hopefully you now understand how R can have two sets of matrix algebra routines, as
we mentioned above. The methods above for det are all part of the Matrix library (and
if you try methods(det) without loading the Matrix library, you won’t see them listed).
With the Matrix library loaded, a plain old matrix will have its determinant calculated
by det.default, while a matrix of class Matrix will be handled by det.Matrix.

The convenience of classes and methods is illustrated better methods(plot). The list
shows that R has a series of methods that generate suitable plots for a variety of classes
(including statistical models, time series, functions, etc.) and the appropriate one is
usually invoked “under the hood” without the user having to specify which one you
want.

The inconvenience of is that some R functions require arguments of a specific class, and
you may then have to devote some effort to converting things from one class to another
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(using functions like as.matrix). If you get an error message indicating that you’re in
this kind of trouble, use the help system to see if a function as.whatever exists that can
convert into the necessary class; usually there will be one, if what you’re trying to do is
legitimate.
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14 Optimization and fitting models to data

Optimization is extremely important and extremely difficult. A typical problem
for modelers is the following: given a set of data and a model, we want to choose
model parameters to fit the data as well as possible. Here is an example: a data set
(x(t), t = 1, 2, · · · , 14) is stored in vectors tvals,xvals and we want to fit those data with
a differential equation, the so-called θ-logistic model

dx/dt = rx(1− (x/K)θ).

tvals=1:14;

xvals=c(15.58,30.04,66.05,141.6,274.6,410.0,468.8,526.4,472.5,

496.6,489.5,492.0,496.8,473.0);

ThetaLogist=function(t,x,parms) {

r=parms[1]; K=parms[2]; theta=parms[3]

xdot=r*x*(1-(x/K)^theta);

return(list(xdot));

}

The first step is to choose an objective function F (p) - a measure of how close the
model is to the data, as a function of the parameter vector p. The objective function
must be set up so that small is beautiful — a small value of F means a good fit to the
data. One commonly used measure is the least squares criterion: choose parameters to
minimize the sum of squared deviations between data and model output

TLfit=function(p) {

parms=p[1:3]; x0=p[4]; times=1:14;

out=lsoda(x0,times,ThetaLogist,parms,hmin=0.001);

mse=mean((out[,2]-xvals)^2);

return(mse);

}

Note that the model has 3 parameters, but the objective function TLFit has 4 arguments
(i.e. p is a vector of length 4). The additional argument is the initial value x0. Were
we to use xvals[1] as x0 we would be giving that value special treatment, insisting that
the model solution pass exactly through that value. To put all data points on an equal
footing, we have to treat x0 as another unknown value to estimate.

Now we want to minimize TLFit as a function of p. Calculus is no help: we can com-
pute values of TLfit but there is no formula, so we can’t use a “set derivatives to 0”
approach. Instead we hand the problem over to an optimizer, a routine that searches
for the minimum of a function. Because optimization is important for lots of things —
not just theoretical ecology, but really important things like devising delivery routes to
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provision each McDonalds at minimal expense — considerable effort has gone into devel-
oping software that can hunt efficiently for minima of functions. In R these are accessed
through the functions optim and nlm. The former has the advantage of providing a
common interface to several methods, so we will discuss optim here, but use of nlm is
very similar. For the example above,

p0=c(1,5,1,15);

fit=optim(p0,TLfit);

fit2=optim(fit$par,TLfit);

fit$par; fit2$par;

p0 is our initial guess, based on eyeballing the data for r,K, x0 and starting with a
standard logistic (θ = 1). The next line does a minimal call to optim, providing the
objective function name and the initial guess, and accepting default values for everything
else.

The default optimization method is the Nelder-Mead Simplex Algorithm, discussed be-
low. This is a robust method intended for functions where it is costly to compute deriva-
tives of the objective function, so it is best to search based only on values of the objective
function. As a safeguard, we re-optimize starting from the supposed minimum identified
on the first call, and check to see that we converged back to the same parameter esti-
mates. This is relatively quick if the first search found the minimum, and if not you want
to know about it so that you can try again or switch to another search method. In this
case the re-optimization makes no significant adjustments to parameters, so we’re done
and can plot the results (Figure 4) — see FitThetaLogist.R for the complete code.
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Figure 4: Results from least-squares fitting of the θ-logistic model. Points are the data,
curve is the model solution with best-fitting parameters

Exercise 14.1 Type names(fit) at the console, and then use ?optim to find out what
all the parts are of the object returned by optim.
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Exercise 14.2 If we reduce the number of parameters by assuming that θ = 1 (a
standard logistic model) can you fit the data as well? Modify the script file for the
example so that θ = 1, i.e. dx/dt = rx(1− x/K), and see if the model can fit the data
as well as when we also allow θ to be fitted.

Exercise 14.3 Write a script file that uses optim to fit the same data as in the example
above, by the difference equation model

xt+1 =
λxt

1 + bxt

[in plant ecology this is known as the Reciprocal Yield Law model]. Have your script
produce a plot of data and fitted model like Figure (4). Note that instead of calling
lsoda to solve the model, you will have to write a for-loop (inside the objective function)
to compute solutions of the model. You’ll also need an initial guess for the parameter
values. The initial growth when x is small gives you an idea of what λ ought to be, and
then you can estimate b so that the model’s equilibrium corresponds to what you see in
the data.

14.1 What to optimize?

This is not an easy question, because it depends on what you believe about the actual
system generating the data. In our θ-logistic example above, we asked for a single, deter-
ministic solution of the model to pass close to all the data points. This is called calibration
or trajectory matching. It assumes that the real system is deterministic (noiseless), and
that all differences between data and model output are due to measurement error (i.e.
that the model is perfect but the data are not). In that case the objective function can
be chosen to correspond to the statistical principle of maximum likelihood: parame-
ters are chosen to maximize the likelihood of the observed data, based on the statistical
distribution of the measurement errors.

If the errors have a Normal distribution with constant variance, it is a standard result from
statistics that maximum likelihood is equivalent to the least-squares objective function,
as in the example above. Other assumptions about measurement errors lead to different
objective functions. This is really a topic in statistics, so we will mention only one
other important case. If the errors are Poisson (which is often true or close-enough
for population samples) then maximum likelihood is approximately equivalent to least-
squares after transforming data and model to square-root scale. That is, we change the
objective function by redefining

mse=mean((sqrt(out[,2])-sqrt(xvals))^2);

Exercise 14.4 Does this improved objective function make a difference in our θ-logistic
example — that is, does the change in objective function result in any meaningful change in



14 OPTIMIZATION AND FITTING MODELS TO DATA 47

parameter estimates or the fitted model solution? Modify the script file for the example,
compute the parameter estimates with the modified objective function, and compare the
two sets of parameter estimates.

Trajectory matching can run into problems if the true system is not deterministic. For
example, consider a discrete-time model with random noise

Xt+1 = F (Xt) + σZt (10)

where Xt is a vector of state variables, and Zt is a vector of random perturbations to the
state variable dynamics. The presence of random noise can change qualitative properties
of model solutions. For example, a model that (in the absence of noise) would exhibit
oscillatory convergence to a steady state, may instead exhibit fairly regular cycles. Fitting
such data by trajectory matching will lead to incorrect parameters such that the model
has stable periodic solutions in the absence of noise. Other fitting criteria are therefore
more appropriate.

If error-free data are available on all state variables, then (10) is a nonlinear regression
model, which can be fitted by any modern statistics package using nonlinear least squares
(in R this is function nls). If the data are not totally accurate it’s a more difficult
regression problem but still doable (functions in the nlme library).

More typically one only has data on one or a few state variables. You can then try to
choose parameters (including the noise level σ) so that model output matches overall
features of the data such as the range of variation, periodicity of cycles if they occur, and
the pattern of correlation between successive values. This is called “moment matching”
or “method of moments” in the statistical literature. It suffers from the fact that the
choice of which features to match is subjective, but has the advantage of that very few
assumptions are needed about the underlying model, in order for parameter estimates to
have good statistical properties.

Exercise 14.5 Here again is the Rosenzweig-MacArthur model

dn1/dt = r1n1(1− n1/K1)− n2 a1n1
B + n1

dn2/dt = n2
a2n1
B + n1

− r2n2
(11)

Suppose that parameter values r1 = r2 = 1, a1 = 2, a2 = 1.8, B = 200 are known, and
you have data showing the predators cycling regularly between a minimum value of about
95 and a maximum of about 205; you have no data on the prey. Write a script file to
estimate K1 by matching these features as closely as possible. That is, your objective
function will take a single argument K1, generate solutions of the model, and return
some measure of how well the model solutions match the observed features of the data.
Since there is only one parameter to be fitted, for this exercise it will be sufficient to plot
the objective function versus the value of K1, and see where it is minimized (for a more
accurate result, see ?optimize).
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14.2 Controlling the optimization

Parameters affecting how optim proceeds can be set using the optional argument con-
trol, which is a list of options and their values. For example,

fit=optim(p0,TLfit,control=list(method="BFGS",maxit=1000,trace=6));

Here we have: changed the optimization method to BFGS, set the maximum number of
search steps to 1000, and set the level of tracing to 6 (tracing means printing information
to the console window as optimization proceeds, which is useful if things are going badly
and you want to know why).

There are a lot of optional arguments — see ?optim. Default values are well chosen
except that the iteration limit maxit is suitable for “easy” problems where the function
is not too wiggly or convoluted. If you often find that your safeguard optimization (fit2 in
the example above) is different from the first, try increasing the number of iterations. If
optimization is generally working but takes a long time, you might try decreasing the error
tolerances (abstol and reltol in control). Optim tries to find the minimum with the
maximum possible accuracy (given the number of digits used to represent real numbers).
Sometimes that results in a lot of time being spent making tiny, meaningless adjustments
to parameter estimates (e.g. involving more significant digits than are reliable in the
data).

Exercise 14.6 We need optimization for reasons besides parameter estimation. Consider
a forager’s expected rate of energy gain R(t1, t2) in a Patch Model with two patch types,
travel time T = 3, 70% patches of type 1 with gain function g1(t) = 2t

0.5, and 30% of
type 2 with gain function g2(t) = t

0.7. The code snippet below (from an old lab solution)
defines the gain rate as function:

g1=function(t){2*t^0.5}

g2=function(t){t^0.7}

gainR=function(t1,t2) {

return((0.7*g1(t1)+0.3*g2(t2))/(3+0.7*t1+0.3*t2))

}

Write a script that uses optim to find the values (t∗1, t
∗
2) at which the rate of energy gain

R(t1, t2) is maximized, using the BFGS method. Recall that for optim the objective
function must have one input argument, not two. Also recall that optim finds where a
function is minimized; to find where a function F (x) is maximized you can use −F (x)
as the objective function.

14.3 How to optimize

The basic decision in optimization is how you want to get from your initial guess to a
final value: a few clever steps, or a lot of simple steps. This discussion is based on Kelley
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(1999), the optimization chapter in Numerical Recipes, and much painful experience
trying to fit models to data.

“Clever” means using a lot of information about the function, either computed at each
new evaluation point (e.g. its derivatives and possibly second derivatives with respect
to each argument) or else built up gradually over the search for the minimum. Using
this information the algorithm tries to find the nearest local minimum of the function,
typically by constructing a well-informed guess as to the direction to the minimum from
the current evaluation point, and then searching for the smallest function value in that
direction. For example, the local first and second derivatives define a quadratic surface
approximation, and the search direction points at the minimum of that surface.

Such cleverness is often counterproductive, since your function may have many local
minima that are much less good than the global minimum. To find the global minimum
you then have to repeat the optimization many times, starting from different initial
points. The efficiency of each repetition can easily be more than outweighed by the need
to run many repetitions.

Less clever method often fare better against multiple local minima, because they work
by gradually narrowing in on a minimum, and so initially they don’t pay much attention
to the function’s fine-scale structure (Kelley 1999). In our example above we used one
such method, the Nelder-Mead Simplex Algorithm. Initially, values of the function are
computed at a set of points (a simplex ) surrounding the initial guess (n points for a
function of n variables). At each step, the algorithm tries to replace the worst point (the
one with the highest function value) with a better one, along the line between the worst
point and the average of all the others, by evaluating the function at a few pre-chosen
points along that line. If that fails, it may shrink the simplex down around the best point
on the simplex.

More clever methods in optim include BFGS and L-BFGS-B. Both of these use deriv-
atives of the objective function, either supplied by the user as a function or else computed
numerically by forming difference quotients. As the function is repeatedly evaluated in
the search for the minimum, values of the derivatives at those points are used to build
up an approximation to the matrix of second derivatives, which is then used as the basis
for a quadratic approximation. If your function is not too wiggly, this intermediate level
of cleverness is often very effective, so long as it is coupled with a strategy for junking
the approximate second derivative matrix and starting over from scratch if you get into
trouble.
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15 Schedule of lab sessions for Spring 2003

Week 1, January 20

• Read sections 1 through 5
• Do in lab: Exercises 2.1, 2.2, 4.1, 4.2, 4.3.
• Homework: Exercises 4.4 and 4.5; Install R on your computer, and then download
and install the boot library (in Windows, you can do this easist via the console
window menus Packages/Install Package from CRAN.

Week 2, January 27

• Read sections 6 and 7 (vectors and matrices)
• Do in lab: all exercises in the sections
• Homework: Write a script file to compute R(n) for any one value of n in Lecture
Exercise 1.8.

Week 3, Feb 3

• Section 8 (Loops), omitting A simulation project.

• Do in lab:
• Homework: exercises 8.5,8.6

Week 4, Feb 10

• Section 9 (Branching) and 10 (functions)
• Do in lab:
• Homework: exercises 8.5,8.6

Week 5, Feb 17
In class: simulation project, exercise 8.8
HW: work with the program, exercise 8.9

Week 6, Feb 24
In lab: ode solutions, 11.1 HW: 11.2

Week 7 In lab: matrix operations, eigenvalues/eigenvectors
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